Lifting Group Representations to Maximal Cohen–Macaulay Representations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

Surface Group Representations with Maximal Toledo Invariant

We develop the theory of maximal representations of the fundamental group π1(Σ) of a compact connected oriented surface Σ with boundary ∂Σ, into the isometry group of a Hermitian symmetric space X or, more generally, a group of Hermitian type G. For any homomorphism ρ : π1(Σ) → G, we define the Toledo invariant T(Σ, ρ), a numerical invariant which is in general not a characteristic number, but ...

متن کامل

quasi-permutation representations of suzttki group

by a quasi-permutation matrix we mean a square matrix over the complex field c with non-negative integral trace. thus every permutation matrix over c is a quasipermutation matrix. for a given finite group g, let p(g) denote the minimal degree of a faithful permutation representation of g (or of a faithful representation of g by permutation matrices), let q(g) denote the minimal degree of a fait...

متن کامل

Lifting Representations of Z - Groups

Let K be the kernel of an epimorphism G→ Z, where G is a finitely presented group. If K has infinitely many subgroups of index 2, 3 or 4, then it has uncountably many. Moreover, if K is the commutator subgroup of a classical knot group G, then any homomorphism from K onto the symmetric group S2 (resp. Z3) lifts to a homomorphism onto S3 (resp. alternating group A4).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1997

ISSN: 0021-8693

DOI: 10.1006/jabr.1996.6824